

COMPUTER NETWORKS LAB MANUAL

(R22A0596)

 B.TECH

 (III YEAR –I SEM)
 (2025-26)

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
(Artificial Intelligence & Machine Learning)

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY
(Autonomous Institution – UGC, Govt. of India)

Recognized under 2(f) and 12 (B) of UGC ACT 1956

(Affiliated to JNTUH, Hyderabad, Approved by AICTE - Accredited by NBA & NAAC – ‘A’ Grade - ISO 9001:2015 Certified)

Maisammaguda, Dhulapally (Post Via. Hakimpet), Secunderabad – 500100, Telangana State, India

Department of Computer Science & Engineering

(Artificial Intelligence & Machine Learning)

Vision

To be a premier center for academic excellence and research through innovative

interdisciplinary collaborations and making significant contributions to the

community, organizations, and society as a whole.

.

Mission

 To impart cutting-edge Artificial Intelligence technology in accordance with

industry norms.

 To instil in students a desire to conduct research in order to tackle challenging

technical problems for industry by sustaining the ethical values.

 To develop effective graduates who are responsible for their professional

growth, leadership qualities and are committed to lifelong learning.

 Quality Policy

 To provide sophisticated technical infrastructure and to inspire students to

reach their full potential.

 To provide students with a solid academic and research environment for a

comprehensive learning experience.

 To provide research development, consulting, testing, and customized training

to satisfy specific industrial demands, thereby encouraging self-employment

and entrepreneurship among students.

Programme Educational Objectives (PEO):

Graduates of the program will be able to

PEO1: Build successful careers in AI & ML and related fields by applying fundamental

concepts of computer science, maths and specialized knowledge of intelligent systems.

PEO2: Design and implement AI-based solutions to real-world problems,

demonstrating, creativity, critical thinking.

PEO3: Leverage the professional expertise to enter the workforce, seek higher

education, and conduct research on AI-based problem resolution.

PEO4: Uphold ethical values and consider societal, legal, and environmental

Consequences while developing intelligent systems, safeguarding responsible

AI development.

Programme Specific Outcomes (PSO):

After successful completion of the program a student is expected to have

Specific abilities to:

PSO 1: Translate end-user requirements into system and

 software requirements.

PSO 2: Generate a high-level design of the system from the software

requirements.

PSO 3: Experience and/or awareness of testing problems and will be able

to develop a simple testing report.

PSO 4: Understand and develop various structure and behavior UML

diagrams.

PSO 5: Explain the knowledge of project management tool Demonstrate

how to manage file using Project Libre project management tool.

PROGRAM OUTCOMES (POs)

Engineering Graduates should possess the following:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization to the solution of complex engineering

problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex

engineering problems reaching substantiated conclusions using first principles of

mathematics, natural sciences, and engineering sciences.

3. Design / development of solutions: Design solutions for complex engineering problems

and design system components or processes that meet the specified needs with appropriate

consideration for the public health and safety, and the cultural, societal, and environmental

considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research

methods including design of experiments, analysis and interpretation of data, and synthesis

of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and

modern engineering and IT tools including prediction and modeling to complex

engineering activities with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge toassess

societal, health, safety, legal and cultural issues and the consequent responsibilities relevant

to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering

solutions in societal and environmental contexts, and demonstrate the knowledge of, and

need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and

norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or

leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the

engineering community and with society at large, such as, being able to comprehend and

write effective reports and design documentation, make effective presentations, and give

and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the

engineering and management principles and apply these to one’s own work, as a member

and leader in a team, to manage projects and in multi-disciplinary environments.

12. Life- long learning: Recognize the need for, and have the preparation and ability to

engage in independent and life-long learning in the broadest context of technological

change.

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

Maisammaguda, Dhulapally Post, Via Hakimpet, Secunderabad – 500100

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERIN
 (Artificial Intelligence & Machine Learning)

GENERAL LABORATORY INSTRUCTIONS

1. Students are advised to come to the laboratory at least 5 minutes before (to starting time), those

who come after 5 minutes will not be allowed into the lab.

2. Plan your task properly much before to the commencement, come prepared to the lab with

the synopsis / program / experiment details.

3. Student shouldenter into the laboratory with:

a. Laboratory observation notes with all the details (Problem statement, Aim, Algorithm, Procedure,

Program, Expected Output, etc.,) filled in for the lab session.

b. Laboratory Record updated up to the last session experiments and other utensils (if any) needed in

the lab.

c. Proper Dress code and Identity card.

4. Sign in the laboratory login register, write the TIME-IN, and occupy the computer system allotted

to you by the faculty.

5. Execute your task in the laboratory, and record the results / output in the lab observation

notebook, and get certified by the concerned faculty.

6. All the students should be polite and cooperative with the laboratory staff, must maintain the

discipline and decency in the laboratory.

7. Computer labs are established with sophisticated and high-end branded systems, which should

be utilized properly.

8. Students / Faculty must keep their mobile phones in SWITCHED OFF mode during the lab sessions.

Misuse of the equipment, misbehaviors with the staff and systems etc., will attract severe punishment.

9. Students must take the permission of the faculty in case of any urgency to go out; if anybody found

loitering outside the lab / class without permission during working hours will be treated seriously and

punished appropriately.

10. Students should LOG OFF/ SHUT DOWN the computer system before he/she leaves the lab after

completing the task (experiment) in all aspects. He/she must ensure the system / seat is kept properly.

Lab Objectives:

 To introduce the basic concepts and techniques of Machine Learning and the need of

Machine Learning techniques in real-world problems.

 To provide understanding of various Machine Learning algorithms and the way to

evaluate performance of the Machine Learning algorithms.

 To apply Machine Learning to learn, predict and classify the real-world problems in the

Supervised Learning paradigms as well as discover the Unsupervised Learning

paradigms of Machine Learning.

 To inculcate in students professional and ethical attitude, multidisciplinary

approach and an ability to relate real-world issues and provide a cost effective

solution to it by developing ML applications.

Lab Outcomes:

Upon successful completion of this course, the students will be able to:

 Understand the basic concepts and techniques of Machine Learning and the need of

Machine Learning techniques in real-world problems.

 Understand various Machine Learning algorithms and the way to evaluate

performance of the Machine Learning algorithms.

 Apply Machine Learning to learn, predict and classify the real-world problems in the

Supervised Learning paradigms as well as discover the Unsupervised Learning

paradigms of Machine Learning.

 Understand, learn and design Artificial Neural Networks of Supervised

Learning for the selected problems.

 Understand the concept of Reinforcement Learning and Ensemble Methods

 Head of the Department Principal

Introduction about lab

System configurations are as follows:

 Hardware/Software’sinstalled:Intel®CORE™i3-

3240CPU@3.40GHZRAM:4GB/Anaconda Navigator or Python and Jupyter

Notebook or Google Colab.

 Packages required to run the programs: Math, Scipy, Numpy, Matplotlib,

Pandas, Sklearn, Tensorflow, Keras etc.

 Systems are provided for students in the1:1ratio.

 Explanationontoday’sexperimentbytheconcernedfacultyusingPPTcoveringthefollowi

ngaspects

Systemsareassignednumbersandsamesystemisallottedforstudentswhentheydothelab.

 All Systems are configuring din LINUX, it is open source and students can use any

different programming environments through package installation.

Guidelines to students

A. Standard operating procedure

a) :

1) Name of the experiment

2) Aim

3) Software/Hardware requirements

4) Writing the python programs by the students

5) Commands for executing programs

Writing of the experiment in the Observation Book

The students will write the today’s experiment in the Observation book as per the

following format:

a) Name of the experiment

b) Aim

c) Writing the program

d) Viva-Voce Questions and Answers

e) Errors observed (if any)during compilation/execution

Signature of the Faculty

mailto:CPU@3.40GHZ

Instructions to maintain the record

 Before start of the first lab they have to buy their record and bring their record to the lab.

 Regularly (Weekly) update the record after completion of the experiment and get it corrected

with concerned lab in-charge for continuous evaluation. In case the record is lost inform the

same day to the faculty in charge and get the new record within 2 days the record has to be

submitted and get it corrected by the faculty.

 If record is not submitted in time or record is not written properly, the evaluation marks (5M)

will be deducted.

Awarding the marks for day to day evaluation

Total marks for day to day evaluation is 15 Marks as per Autonomous (JNTUH). These 15

Marks are distributed as:

Regularity 3Marks

Program written 3Marks

Execution & Result 3Marks

Viva-Voce 3Marks

Dress Code 3Marks

Allocation of Marks for Lab Internal
Total marks for lab internal are 40 Marks as per Autonomous (JNTUH.)

These 40 Marks are distributed as:

Average of day to day evaluation marks:15 Marks

Lab Mid exam:15 Marks

VIVA&Observation:10 Marks

Allocation of Marks for Lab External

Total marks for lab Internal and External are 60Marks as per Autonomous/ (JNTUH).

These 60 External Lab Marks are distributed as:

Program Written 15Marks

Program Execution and Result 25Marks

Viva-Voce 10Marks

Record 10Marks

Computer Networks Lab Manual MRCET

INDEX

S.No List of Experiments in CN Page.no

1.
Implement the data link layer framing methods such as
character count, character stuffing and bit stuffing

1-8

2
Implement on a data set of characters the three CRC
polynomials CRC 12, CRC 16 and CRC CCIP

9-12

3
Implement Dijkstra’s algorithm to compute the shortest
path thru a graph

13-16

4
Take an example subnet graph with weights indicating delay
between nodes

17-18

5
Now obtain Routing table art each node using distance vector
routing algorithm

19-21

6 Take an example subnet of hosts. Obtain broadcast tree for it 22-24

7
Take a 64 bit playing text and encrypt the same using DES
algorithm.

25-38

8 Write a program to break the above DES coding 39-43

9
Using RSA algorithm Encrypt a text data and Decrypt the
same.

44-48

Computer Networks Lab Manual MRCET

1. a) Implement character stuffing on given data

Algorithm:

Step 1: Initially give the user 2 choices, whether to character stuff or to directly exit, if wrong

choice is entered then prompt an invalid choice message.

Step 2: Intake from the user the number of characters which are to be character stuffed.

Step 3: Then the characters which are to be stuffed are to be taken inside the for loop.

Step 4: Original data is displayed and the characters to be stuffed at the start and end of the

frame are uploaded in the program.

Step 5: If DLE character is present then stuff DLE character before it.

Step 6: The characters DLESTX are inserted at the start and end of the data.

Step 7: The data along with the stuffed characters are displayed

Step 8: The original data is recovered and displayed on the receiving side

Step 9: Stop

Program :
#include<stdio.h>
#include<conio.h>
#include<stdlib.h>
void charc(void);
void main()
{
int choice;
while(1)
{
printf("\n\n\n1.character stuffing");
printf("\n\n2.exit");printf("\n\n\nenterchoice");
scanf("%d",&choice);
printf("%d",choice);if(choice>2)
printf("\n\n invalid option....please renter");
switch(choice)
{
case 1:charc();
break;
case 2:_exit(0);

Computer Networks Lab Manual MRCET

}
}
}
void charc(void)
{
clrscr();
char c[50],d[50],t[50];
int i,m,j;
printf("enter the number of characters\n");
scanf("%d",&m);printf("\n enter the characters\n");
for(i=0;i<m+1;i++)
{
scanf("%c",&c[i]);
}
printf("\n original data\n");
for(i=0;i<m+1;i++)
printf("%c",c[i]);d[0]='d';
d[1]='l';d[2]='e';
d[3]='s';d[4]='t';
d[5]='x';
for(i=0,j=6;i<m+1;i++,j++)
{
if((c[i]=='d'&&c[i+1]=='l'&& c[i+2]=='e'))
{
d[j]='d';
j++;
d[j]='l';
j++;
d[j]='e';
j++;
m=m+3;
}
d[j]=c[i];
}
m=m+6;
m++;
d[m]='d';
m++;
d[m]='l';
m++;
d[m]='e';
m++;
d[m]='s';
m++;

d[m]='t';
m++;

Computer Networks Lab Manual MRCET

d[m]='x';
m++;
printf("\n\n transmitted data: \n");
for(i=0;i<m;i++)
{
printf("%c",d[i]);
}
for(i=6,j=0;i<m-6;i++,j++)
{
if(d[i]=='d'&&d[i+1]=='l'&&d[i+2]=='e'&&d[i+3]=='d'&&d[i+4]=='l'&&d[i+5]=='e')
i=i+3;
t[j]=d[i];
}
printf("\n\nreceived data:");
for(i=0;i<j;i++)
{
printf("%c",t[i]);
}
}

o/p :

Computer Networks Lab Manual MRCET

1 b) Implement character count on given data

Algorithm for Character count

1. Start

 2. Append DLE STX at the beginning of the string

3. Check the data if character is present; if character DLE is present in the string (example

DOODLE) insert another DLE in the string (ex: DOODLEDLE)

 4. Transmit DLE ETXat the end of the string

5. Display the string

6. Stop

PROGRAM:

#include<stdio.h>
#include<string.h>
main()
{
int i,j,k,l,count=0,n;
char s[100],cs[50];
clrscr();
printf("\n ENTER THE BIT STRING:");
gets(s);
n=strlen(s);
printf("\nTHE STRING IS\n");
for(i=0;i<n;)
 {
if(s[i]==s[i+1])
{
 count=2;
 i++;
 while(s[i]==s[i+1])
 {
 i++;
 count++;
 }
 if(count>=5)
 {
 printf("$");
 if(count<10)
 printf("0");
 printf("%d%c",count,s[i]);
 i++;

Computer Networks Lab Manual MRCET

 }
 else
 {
 for(j=0;j<count;j++)
 printf("%c",s[i]);
 i++;
 }
 }
 else
 {
 printf("%c",s[i]);
 i++;
 }
 }
 getch(); }

INPUT/OUTPUT:

 ENTER THE BIT STRING:

 123AAAAAAAAAATYKKKPPPPP

THE STRING IS

123$10ATYKKK$05P

Computer Networks Lab Manual MRCET

b) Decode the stuffed data

Algorithm for Character De−stuffing

 1. Start

 2. Neglect initial DLE STX

 3. If DLE is present in the text, ngelect it; if another DLE follows, copy the same to output. 4.

Neglect the trailing DLE ETX

 5. Stop

PROGRAM:

#include<stdio.h>
#include<string.h>
main()
{
int i,j,k,l,n,count;
char s[100],cs[50];
clrscr();

printf("\n ENTER THE STUFFED STRING :");
gets(s);
n=strlen(s);
printf("\nTHE STRING IS\n");
 for(i=0;i<n;)
 {
 if(s[i]=='$')
 { i++;
 count=(s[i]-'0')*10+(s[i+1]-'0');
 if(count<5)
 { clrscr();
 printf("INVALIDE MESSAGE");
 exit(1);
 }
 while(count>0)
 { printf("%c",s[i+2]);
 count--;
 }
 i=i+3;
 }
 else
 {
 printf("%c",s[i]);

Computer Networks Lab Manual MRCET

 i++;
 }
 }
 getch(); }

INPUT/OUTPUT:

ENTER THE STUFFED STRING: 123$10ATY$06K

THE STRING IS:

123AAAAAAAAAATYKKKKKK

Computer Networks Lab Manual MRCET

c) Bit stuffing on given binary data

Algorithm for Bit−Stuffing

1. Start

 2. Initialize the array for transmitted stream with the special bit pattern 0111 1110 which indicates

the beginning of the frame.

3. Get the bit stream to be transmitted in to the array.

4. Check for five consecutive ones and if they occur, stuff a bit 0

 5. Display the data transmitted as it appears on the data line after appending 0111 1110 at the end

 6. For de−stuffing, copy the transmitted data to another array after detecting the stuffed bits 7.

Display the received bit stream

 8. Stop

#include<stdio.h>
#include<conio.h>
#include<math.h>
main()
{
int b[100],b1[100],l,k,n=0,i,j,z,i1,s[20],f[8]={0,1,1,1,1,1,1,0},j1;
static int a[100];
char ch='y',bs[50];
clrscr();
do
{
i1=z=n=0;
clrscr();
printf("\n Enter the bit string(space for each byte)");
gets(bs);
for(i=0;bs[i]!='\0';i++)
if(bs[i]!=' ')
b[n++]=bs[i]-'0';
for(i=0;i<n;i++)
{
if(b[i]==1){
i1++;
if(i1==5){s[z++]=i+1;i1=0;}
}
else i1=0;
}
j1=j=0;
for(i=0;i<z;i++)

Computer Networks Lab Manual MRCET

{
while(j<s[i])
b1[j1++]=b[j++];
b1[j1++]=0;
}
while(j1<n+z)
b1[j1++]=b[j++];
l=n/8;
for(i=0;l>0;i++)
{
a[i]=l%2;
l=l/2;
}
printf("\nAfter stuffing :");
for(j=7;j>=0;j--)
printf("%d",a[j]);
printf(" ");
for(k=0;k<8;k++)
printf("%d",f[k]);
printf(" ");
for(k=0;k<j1;k++)
printf("%d",b1[k]);
printf(" ");
for(k=0;k<8;k++)
printf("%d",f[k]);
printf("\n\n Do u want to continue?");
ch=getch();
}
while(ch=='y' || ch=='Y');
getch();
}

INPUT/OUTPUT:

 Enter the bit string (space for each byte)
 11111111 01111110 00111110

After stuffing : 00000011 01111110 111110111011111010001111100 01111110

Computer Networks Lab Manual MRCET

d)Destuff the given stuffed data frame

include<stdio.h>
#include<conio.h>
#include<math.h>
main()
{
int i,n,n1,k,j,ni,len;
char f[8]={'0','1','1','1','1','1','1','0'},st[100];
static int ds[100];
clrscr();
printf("\n\nEnter the stuffed data");
gets(st);
n=strlen(st);
ni=k=0;
 for(i=8;i<16;i++)
 if(st[i]!=f[k++])
 {
 printf("\nError in flag");
 exit(1);
 }
 k=0;
 for(i=n-8;i<n;i++)
 if(f[k++]!=st[i])
 {
 printf("\nError in flag");
 exit(1);
 }
 for(i=0;i<n;i++)
 st[i]=st[i]-'0';
 len=0;
 j=7;
 for(i=0;i<8;i++)
 len+=pow(2,i)*st[j--];
 k=ni=j=0;
 for(i=16;i<n-8;i++)
 {
 if(st[i]==1){
 ni++;
 if(ni==5)
 {
 ds[j++]=1;
 i++;
 k++;
 ni=0;}
 else

Computer Networks Lab Manual MRCET

 ds[j++]=1;
 }
 else
 ds[j++]=0;
 }
 n1=n-24-k;
 if(len*8!=n1){
 printf("\n Error in data length");
 exit(1);
 }
 printf("\n After destuffing ");
 for(i=0;i<n1;i++)
 printf("%d",ds[i]);
getch();
}

INPUT/OUTPUT:

Enter the stuffed data000000110111111011111011101111101000111110001111110

 After destuffing 111111110111101000111100

Exercise:
a) Implement K-Bit run length code on given data
b) Decode the K-Bit run length code

Computer Networks Lab Manual MRCET

1. a)Generate CRC code for a given data frame

Algorithm

1. A string of n as is appended to the data unit. The length of predetermined divisor is n+ 1.

2. The newly formed data unit 1. A string of n as is appended to the data unit. The length of
predetermined divisor is n+ 1.

i.e. original data + string of n as are divided by the divisor using binary division and remainder is
obtained. This remainder is called CRC.

3. Now, string of n Os appended to data unit is replaced by the CRC remainder (which is also of
n bit).

4. The data unit + CRC is then transmitted to receiver.

5. The receiver on receiving it divides data unit + CRC by the same divisor & checks the
remainder.

6. If the remainder of division is zero, receiver assumes that there is no error in data and it
accepts it.

7. If remainder is non-zero then there is an error in data and receiver rejects it.

PROGRAM:

#include<stdio.h>
#include<math.h>
main()
{

int i,j,k,m,n,cl;
char a[10],b[100],c[100];
clrscr();
printf("\n ENTER POLYNANOMIAL:");
scanf("%s",a);
printf("\n ENTER THE FRAME:");
scanf("%s",b);
m=strlen(a);
n=strlen(b);

for(i=0;i<m;i++) /* To eliminat first zeros in polynomial */
{
 if(a[i]=='1')
 {
 m=m-i;
 break;
 }
}

Computer Networks Lab Manual MRCET

 for(k=0;k<m;k++) /* To Adjust the polynomial */
 a[k]=a[k+i];

 cl=m+n-1;
 for(i=0;i<n;i++) /* To copy the original frame to c[]*/
 c[i]=b[i];
 for(i=n;i<cl;i++) /* To add n-1 zeros at the end of frame */
 c[i]='0';
 c[i]='\0'; /*To make it as a string */

 for(i=0;i<n;i++) /* To set polynomial remainder at end of c[]*/
 if(c[i]=='1')
 {
 for(j=i,k=0;k<m;k++,j++)
 if(a[k]==c[j])
 c[j]='0';
 else
 c[j]='1';
 }
 for(i=0;i<n;i++) /* To copy original data in c[] */
 c[i]=b[i];
 printf("\n THE MESSAGE IS: %s",c);
 getch();
 }

INPUT/OUTPUT:

 ENTER POLYNANOMIAL:1011

 ENTER THE FRAME:10011101

 THE MESSAGE IS: 10011101011

 ENTER POLYNANOMIAL:00101

 ENTER THE FRAME:10101011

 THE MESSAGE IS: 1010101101

Computer Networks Lab Manual MRCET

 b) Verify the CRC code

#include<stdio.h>
#include<math.h>
main()
{

int i,j,k,m,n,cl;
char a[10],c[100];
clrscr();
printf("\n ENTER POLYNANOMIAL:");
scanf("%s",a);
printf("\n ENTER THE CRC FRAME:");
scanf("%s",c);
m=strlen(a);
cl=strlen(c);

for(i=0;i<m;i++) /* To eliminat first zeros in polynomial */
{
 if(a[i]=='1')
 { m=m-i; break; }

}

 for(k=0;k<m;k++) /* To Adjust the polynomial */
 a[k]=a[k+i];

 n=cl-m+1;

 for(i=0;i<n;i++) /* To check polynomial remainder is zero or not */
 if(c[i]=='1')
 {
 for(j=i,k=0;k<m;k++,j++)
 if(a[k]==c[j])
 c[j]='0';
 else
 c[j]='1';
 }
 for(i=0;i<cl;i++) /* To copy original data in c[] */
 if(c[i]=='1')
 {
 printf("\n THERE IS SOME ERROR IN MESSAGE :");
 break;
 }
 if(i==cl)
 printf("\n MESSAGE IS CORRECT");
 getch();

Computer Networks Lab Manual MRCET

 }

INPUT/OUTPUT :

 ENTER POLYNANOMIAL: 1011

 ENTER THE CRC FRAME: 10101011101

 THERE IS SOME ERROR IN MESSAGE:

 ENTER POLYNANOMIAL: 01011

 ENTER THE CRC FRAME: 10011101011

 MESSAGE IS CORRECT

Exercise:

1. a) Implement Hamming code Generation for a given binary code

 b) Hamming code verification and checking
2. Implement even and odd parity for given binary code

Computer Networks Lab Manual MRCET

2. Implement Dijkstra’s algorithm to compute the shortest path through a graph

Algorithm:

1. Assign to every node a tentative distance value: set it to zero for our initial node and to infinity

for all other nodes.

 2. Mark all nodes unvisited. Set the initial node as current. Create a set of the unvisited nodes

called the unvisited set consisting of all the nodes.

 3. For the current node, consider all of its unvisited neighbors and calculate their tentative

distances. For example, if the current node A is marked with a distance of 6, and the edge

connecting it with a neighbor B has length 2, then the distance to B (through A) will be 6 + 2 = 8.

If this distance is less than the previously recorded tentative distance of B, then overwrite that

distance. Even though a neighbor has been examined, it is not marked as "visited" at this time,

and it remains in the unvisited set.

 4. When we are done considering all of the neighbors of the current node, mark the current

node as visited and remove it from the unvisited set. A visited node will never be checked again.

 5. If the destination node has been marked visited (when planning a route between two specific

nodes) or if the smallest tentative distance among the nodes in the unvisited set is infinity (when

planning a complete traversal; occurs when there is no connection between the initial node and

remaining unvisited nodes), then stop. The algorithm has finished.

 6. Select the unvisited node that is marked with the smallest tentative distance, and set it as the

new "current node" then go back to step 3.

PROGRAM:

#include<stdio.h>
#include<string.h>
#include<math.h>
main()
{
int u,v,num,i,j,l,k,s[10],min,cost[10][10],dist[10],path[10],n;
clrscr();
printf("\n ENTER VERTECES:");
scanf("%d",&n);
printf("\n ENTER ADJECENCY MATRIX:\n");
for(i=1;i<=n;i++)
{
for(j=1;j<=n;j++)

Computer Networks Lab Manual MRCET

scanf("%d",&cost[i][j]);
}

for(i=1;i<=n;i++)
 for(j=1;j<=n;j++)
 if(i==j)
 cost[i][j]=0;
 else
 if(cost[i][j]==-1)
 cost[i][j]=30000;

 printf("\nENTER SOURCE VERTEX:");
 scanf("%d",&v);
 clrscr();

 for(i=1;i<=n;i++)
 {
 s[i]=0;
 path[i]=v;
 dist[i]=cost[v][i];
 }

 dist[v]=0;
 for(num=2;num<=n;num++)
 { min=30000;
 u=0;
 for(i=1;i<=n;i++)
 {
 if(s[i]!=1)
 if(min>dist[i])
 {
 u=i; min=dist[i];
 }
 }

 s[u]=1;
 for(i=1;i<=n;i++)
 { if(s[i]!=1)
 if(dist[i]>(min+cost[u][i]))
 {
 dist[i]=min+cost[u][i];
 path[i]=u;
 }
 }
 }
 printf("\n");

Computer Networks Lab Manual MRCET

 printf("\nPATH MATRIX:\n");
 printf("\nDISTANCE NODE PATH\n");
 for(i=1;i<=n;i++)
 { printf("\n %d",dist[i]);
 printf(" %d ",i);
 j=i;
 do
 {
 printf(" --> %d ",path[j]);
 u=path[j];
 j=u;
 }while(u!=v);

 }
 getch();
 }

INPUT/OUTPUT:

 ENTER VERTECES:8

 ENTER ADJECENCY MATRIX:

 0 2 -1 -1 -1 -1 6 -1
 2 0 7 -1 2 -1 -1 -1
-1 7 0 3 -1 3 -1 -1
-1 -1 3 0 -1 -1 -1 2
-1 2 -1 -1 0 2 1 -1
-1 -1 3 -1 2 0 -1 2
 6 -1 -1 -1 1 -1 0 4
-1 -1 -1 2 -1 2 4 0

ENTER SOURCE VERTEX:1

PATH MATRIX:

DISTANCE NODE PATH

 0 1 --> 1
 2 2 --> 1
 9 3 --> 2 --> 1
 10 4 --> 8 --> 6 --> 5 --> 2 --> 1
 4 5 --> 2 --> 1

Computer Networks Lab Manual MRCET

 6 6 --> 5 --> 2 --> 1
 5 7 --> 5 --> 2 --> 1
 8 8 --> 6 --> 5 --> 2 --> 1

Exercise:

1. Write a program for implementing link state routing using
Dijkstra’s algorithm

2. Write a program for Flooding algorithm

Computer Networks Lab Manual MRCET

4. Take an example subnet graph with weights indicating delay between nodes

#include<stdio.h>
#include<conio.h>
struct full
{
 char line[10],dest[10];
 int hops;
}f[20];
 main()
{
 int nv,min,minver,i;
 char sv[2],temp;
 clrscr();
 printf("\nEnter number of vertices:");
 scanf("%d",&nv);
 printf("\n Enter source vertex: ");
 scanf("%s",sv);
 printf("\n Enter full table for source vertex %s :\n",sv);

for(i=0;i<nv;i++)
scanf("%s %s %d",f[i].dest,f[i].line,&f[i].hops);

printf("\n HIERARCHIAL TABLE\n\n");

 for(i=0;i<nv;)
 {
 if(sv[0]==f[i].dest[0])
 {
 printf("\n %s %s %d",f[i].dest,f[i].line,f[i].hops);
 i++;
 }
 else
 {
 min=1000;
 minver=0;
 temp=f[i].dest[0];
 while(temp==f[i].dest[0])
 {
 if(min>f[i].hops)
 {
 min=f[i].hops;
 minver=i;
 }
 i++;
 }
 printf("\n %c %s %d ",temp,f[minver].line,f[minver].hops);

Computer Networks Lab Manual MRCET

 }
 }
 getch();
}

INPUT/OUTPUT:

Enter number of vertices: 8

Enter source vertex :1A

Enter full table for source vertex 1A :
1A - -
1B 1B 1
1C 1C 1
2A 1B 1
2B 1B 2
3A 1C 2
3B 1C 3
4A 1C 3

 HIERARCHIAL TABLE

 1A - 0
 1B 1B 1
 1C 1C 1
 2 1B 1
 3 1C 2
 4 1C 3

 Exercise:

1. Implement path vector routing protocol.
2. Routing Information Protocol

Computer Networks Lab Manual MRCET

5. Now obtain Routing table for each node using distance vector routing algorithm

Algorithm:

Input: Graph and a given vertex src

Output: Shortest distance to all vertices from src. If there is a negative weight cycle, then

shortest distances are not calculated, negative weight cycle is reported.

1) This step initializes distances from source to all vertices as infinite and distance to source

itself as 0. Create an array dist[] of size |V| with all values as infinite except dist[src] where src is

source vertex.

2) This step calculates shortest distances. Do following |V|-1 times where |V| is the number of

vertices in given graph.

…..a) Do following for each edge v-u

 ………………If dist[v] > dist[u] + weight of edge uv, then update dist[v]

………………….dist[v] = dist[u] + weight of edge uv

3) This step reports if there is a negative weight cycle in graph. Do following for each edge u-v

……If dist[v] > dist[u] + weight of edge uv, then “Graph contains negative weight cycle”

The idea of step 3 is, step 2 guarantees shortest distances if graph doesn’t contain negative

weight cycle. If we iterate through all edges one more time and get a shorter path for any vertex,

then there is a negative weight cycle

Program:

#include<stdio.h>
#include<math.h>
#include<conio.h>
main()
{
int i,j,k,nv,sn,noadj,edel[20],tdel[20][20],min;
char sv,adver[20],ch;
clrscr();

printf("\n ENTER THE NO.OF VERTECES:");
scanf("%d",&nv);

Computer Networks Lab Manual MRCET

printf("\n ENTER THE SOURCE VERTEX NUM,BER AND NAME:");
scanf("%d",&sn);

flushall();
sv=getchar();

printf("\n NETER NO.OF ADJ VERTECES TO VERTEX %c",sv);
scanf("%d",&noadj);

for(i=0;i<noadj;i++)
{
printf("\n ENTER TIME DELAY and NODE NAME:");
scanf("%d %c",&edel[i],&adver[i]);
}
for(i=0;i<noadj;i++)
{
 printf("\n ENTER THE TIME DELAY FROM %c to ALL OTHER
 NODES: ",adver[i]);
 for(j=0;j<nv;j++)
 scanf("%d",&tdel[i][j]);
}

printf("\n DELAY VIA--VERTEX \n ");
 for(i=0;i<nv;i++)
{
 min=1000;
 ch=0;
 for(j=0;j<noadj;j++)
 if(min>(tdel[j][i]+edel[j]))
 {
 min=tdel[j][i]+edel[j];
 ch=adver[j];
 }
 if(i!=sn-1)
 printf("\n%d %c",min,ch);
 else
 printf("\n0 -");
 }
 getch();
}

INPUT/OUTPUT:

 ENTER THE NO.OF VERTECES:12

 ENTER THE SOURCE VERTEX NUMBER AND NAME:10 J

Computer Networks Lab Manual MRCET

 ENTER NO.OF ADJ VERTECES TO VERTEX 4

 ENTER TIME DELAY and NODE NAME:8 A

 ENTER TIME DELAY and NODE NAME:10 I

 ENTER TIME DELAY and NODE NAME:12 H

 ENTER TIME DELAY and NODE NAME:6 K

 ENTER THE TIME DELAY FROM A to ALL OTHER NODES:
0 12 25 40 14 23 18 17 21 9 24 29

 ENTER THE TIME DELAY FROM I to ALL OTHER NODES:
24 36 18 27 7 20 31 20 0 11 22 33

 ENTER THE TIME DELAY FROM H to ALL OTHER NODES:
20 31 19 8 30 19 6 0 14 7 22 9

 ENTER THE TIME DELAY FROM K to ALL OTHER NODES:
21 28 36 24 22 40 31 19 22 10 0 9

 DELAY VIA--VERTEX
 8 a
20 a
28 i
20 h
17 i
30 i

18 h
12 h
10 i
 0 -
 6 k
15 k

Exercise:

1. Routing table for each node using
hierarchical routing algorithm

 2. Open Shortest Path First

Computer Networks Lab Manual MRCET

Computer Networks Lab Manual MRCET

6. Take an example subnet of hosts. Obtain broadcast tree for it.

/*PROGRAM TO IMPLEMENT BROADCAST ROUTING ALGORITHM*/

Algorithm:

 A router creates a data packet and then sends it to each host one by one. In

this case, the router creates multiple copies of single data packet with

different destination addresses. All packets are sent as unicast but because

they are sent to all, it simulates as if router is broadcasting.

This method consumes lots of bandwidth and router must destination address

of each node.

 Secondly, when router receives a packet that is to be broadcasted, it simply

floods those packets out of all interfaces. All routers are configured in the

same way.

Program:

#include<stdio.h>
int a[10][10],n;
void main()
{
int i,j,root;
clrscr();
printf("Enter no.of nodes:");
scanf("%d",&n);
printf("Enter adjacent matrix\n");
for(i=1;i<=n;i++)
for(j=1;j<=n;j++)
{
printf("Enter connecting of %d-->%d::",i,j);
scanf("%d",&a[i][j]);
}
printf("Enter root node:");
scanf("%d",&root);
adj(root);
}
adj(int k)
{

Computer Networks Lab Manual MRCET

int i,j;
printf("Adjacent node of root node::\n");
printf("%d\n\n",k);
for(j=1;j<=n;j++)
{
if(a[k][j]==1 || a[j][k]==1)
printf("%d\t",j);
}
printf("\n");
for(i=1;i<=n;i++)
{
if((a[k][j]==0) && (a[i][k]==0) && (i!=k))
printf("%d",i);
}
}
OUTPUT

Enter no.of nodes:5
Enter adjacent matrix
Enter connecting of 1-->1::0
Enter connecting of 1-->2::1
Enter connecting of 1-->3::1
Enter connecting of 1-->4::0
Enter connecting of 1-->5::0
Enter connecting of 2-->1::1
Enter connecting of 2-->2::0
Enter connecting of 2-->3::1
Enter connecting of 2-->4::1
Enter connecting of 2-->5::0
Enter connecting of 3-->1::1
Enter connecting of 3-->2::1
Enter connecting of 3-->3::0
Enter connecting of 3-->4::0
Enter connecting of 3-->5::0
Enter connecting of 4-->1::0
Enter connecting of 4-->2::1
Enter connecting of 4-->3::0
Enter connecting of 4-->4::0
Enter connecting of 4-->5::1
Enter connecting of 5-->1::0
Enter connecting of 5-->2::0
Enter connecting of 5-->3::0
Enter connecting of 5-->4::1
Enter connecting of 5-->5::0
Enter root node:2

Computer Networks Lab Manual MRCET

Adjacent node of root node::
2
1 3 4
5

Exercise: 1. Implement Core-Based Tree(CBT) protocol obtain broadcast tree for it.

2. Implement an optimal algorithm for Broadcasting multiple messages in trees.

Computer Networks Lab Manual MRCET

7. Take a 64 bit plain text and encrypt the same using DES algorithm.

/* Program to implement DES */

Algorithm:

1.) Firstly, we need to process the key.

1.1 Get a 64-bit key from the user. (Every 8th bit is considered a parity bit. For a key to have

correct parity, each byte should contain an odd number of "1" bits.)

1.2 Calculate the key schedule.

1.2.1 Perform the following permutation on the 64-bit key. (The parity bits are discarded,

reducing the key to 56 bits. Bit 1 of the permuted block is bit 57 of the original key, bit 2 is bit 49,

and so on with bit56 being bit 4 of the original key.)

1.2.2 Split the permuted key into two halves. The first 28 bits are called C[0] and the last 28 bits

are called D[0].

1.2.3 Calculate the 16 subkeys. Start with i = 1.

1.2.3.1 Perform one or two circular left shifts on both C[i-1] and D[i-1] to get C[i] and D[i],

respectively.

1.2.3.3 Loop back to 1.2.3.1 until K[16] has been calculated.

2 Process a 64-bit data block.

2.1 Get a 64-bit data block. If the block is shorter than 64 bits, it should be padded as

appropriate for the application.

2.2 Perform the following permutation on the data block.

Initial Permutation (IP)

2.3 Split the block into two halves. The first 32 bits are called L[0], and the last 32 bits are called

R[0].

2.4 Apply the 16 subkeys to the data block. Start with i = 1.

2.4.1 Expand the 32-bit R[i-1] into 48 bits according to the bit-selection

2.4.2 Exclusive-or E(R[i-1]) with K[i].

2.4.3 Break E(R[i-1]) xor K[i] into eight 6-bit blocks. Bits 1-6 are B[1], bits 7-12 are B[2], and so

on with bits 43-48 being B[8].

Computer Networks Lab Manual MRCET

2.4.4 Substitute the values found in the S-boxes for all B[j]. Start with j = 1. All values in the S-

boxes should be considered 4 bits wide.

2.4.4.1 Take the 1st and 6th bits of B[j] together as a 2-bit value (call it m) indicating the row in

S[j] to look in for the substitution.

2.4.4.2 Take the 2nd through 5th bits of B[j] together as a 4-bit value (call it n) indicating the

column in S[j] to find the substitution.

2.4.4.3 Replace B[j] with S[j][m][n].

Substitution Box 1 (S[1])

2.4.4.4 Loop back to 2.4.4.1 until all 8 blocks have been replaced.

2.4.5 Permute the concatenation of B[1] through B[8] as indicated below.

Permutation P

2.4.6 Exclusive-or the resulting value with L[i-1]. Thus, all together, your R[i] = L[i-1] xor

P(S[1](B[1])...S[8](B[8])), where B[j] is a 6-bit block of E(R[i-1]) xor K[i]. (The function for R[i] is

written as, R[i] = L[i-1] xor f(R[i-1], K[i]).)

2.4.7 L[i] = R[i-1].

2.4.8 Loop back to 2.4.1 until K[16] has been applied.

2.5 Perform the following permutation on the block R[16]L[16].

Final Permutation (IP**-1)

Program:

#include<stdio.h>

#include<conio.h>

void main()

{

int k[15],k1[15],k2[15],i,j,p[15],p1[15],p2[15];

int p10[10]={3,5,2,7,4,10,1,9,8,6};

Computer Networks Lab Manual MRCET

int p8[10]={6,3,7,4,8,5,10,9};

int t1,t2,t3,t4,t[4],b[10],s,h,a;

int ip[8]={2,6,3,1,4,8,5,7};

int ep[8]={4,1,2,3,2,3,4,1};

int ip1[8]={4,1,3,5,7,2,8,6};

int p4[4]={2,3,4,1};

int s0[4][4]={{1,0,3,2},{3,2,1,0},{0,2,1,3},{3,1,3,2}};

int s1[4][4]={{0,1,2,3},{2,0,1,3},{3,0,1,0},{2,1,0,3}};

clrscr();

printf("\n\tSimplified-DES\n");

printf("\n");

printf("\nEnter the plain text of 8 bits length::\n");

for(i=0;i<8;i++)

scanf("%d",&p2[i]);

printf("\n\nEnter the key of 10 bits length::\n");

for(i=0;i<10;i++)

scanf("%d",&k[i]);

printf("\n\nKey Generation::\n");

for(i=0;i<10;i++)

{

j=p10[i];

p[i]=k[j-1];

}

Computer Networks Lab Manual MRCET

t1=p[0];

t2=p[5];

for(i=0;i<4;i++)

p[i]=p[i+1];

p[i]=t1;

for(i=5;i<9;i++)

p[i]=p[i+1];

p[i]=t2;

for(i=0;i<8;i++)

{

j=p8[i];

k1[i]=p[j-1];

}

t1=p[0];

t2=p[1];

t3=p[5];

t4=p[6];

for(i=0;i<3;i++)

{

p[i]=p[i+2];

}

p[i]=t1;

i++;

Computer Networks Lab Manual MRCET

p[i]=t2;

for(i=5;i<8;i++)

p[i]=p[i+2];

p[i]=t3;

i++;

p[i]=t4;

for(i=0;i<8;i++)

{

j=p8[i];

k2[i]=p[j-1];

}

printf("\nkey k1::");

for(i=0;i<8;i++)

printf("%d",k1[i]);

printf("\nkey k2::");

for(i=0;i<8;i++)

printf("%d",k2[i]);

for(i=0;i<8;i++)

p[i]=p2[i];

for(a=0;a<2;a++)

{

if(a==0)

{

Computer Networks Lab Manual MRCET

for(i=0;i<8;i++)

{

j=ip[i];

p1[i]=p[j-1];

}

}

for(i=0;i<4;i++)

{

if(a==0)

k[i]=p1[i+4];

if(a==1)

{

k[i]=p[i+4];

for(i=0;i<8;i++)

b[i]=p[i];

}

}

for(i=0;i<8;i++)

{

j=ep[i];

p[i]=k[j-1];

}

for(i=0;i<8;i++)

Computer Networks Lab Manual MRCET

{

if(a==0)

{

if(p[i]==k1[i])

k[i]=0;

else

k[i]=1;

}

if(a==1)

{

if(p[i]==k2[i])

k[i]=0;

else

k[i]=1;

}

}

j=0;

for(i=0;i<8;i=i+4)

{

if(k[i]==0&&k[i+3]==0)

{

t[j]=0;

j++;

Computer Networks Lab Manual MRCET

}

if(k[i]==0&&k[i+3]==1)

{

t[j]=1;

j++;

}

if(k[i]==1&&k[i+3]==0)

{

t[j]=2;

j++;

}

if(k[i]==1&&k[i+3]==1)

{

t[j]=3;

j++;

}

if(k[i+1]==0&&k[i+2]==0)

{

t[j]=0;

j++;

}

if(k[i+1]==0&&k[i+2]==1)

{

Computer Networks Lab Manual MRCET

t[j]=1;

j++;

}

if(k[i+1]==1&&k[i+2]==0)

{

t[j]=2;

j++;

}

if(k[i+1]==1&&k[i+2]==1)

{

t[j]=3;

j++;

}

}

s=s0[t[0]][t[1]];

h=s1[t[2]][t[3]];

if(s==0)

{

k[0]=0;

k[1]=0;

}

if(s==1)

{

Computer Networks Lab Manual MRCET

k[0]=0;

k[1]=1;

}

if(s==2)

{

k[0]=1;

k[1]=0;

}

if(s==3)

{

k[0]=1;

k[1]=1;

}

if(h==0)

{

k[2]=0;

k[3]=0;

}

if(h==1)

{

k[2]=0;

k[3]=1;

}

Computer Networks Lab Manual MRCET

if(h==2)

{

k[2]=1;

k[3]=0;

}

if(h==3)

{

k[2]=1;

k[3]=1;

}

for(i=0;i<4;i++)

{

j=p4[i];

p[i]=k[j-1];

}

for(i=0;i<4;i++)

{

if(a==0)

{

if(p1[i]==p[i])

k[i]=0;

else

k[i]=1;

Computer Networks Lab Manual MRCET

}

if(a==1)

{

if(b[i]==p[i])

k[i]=0;

else

k[i]=1;

}

}

if(a==0)

{

for(i=0;i<4;i++)

p[i]=p1[i+4];

for(i=0;i<4;i++)

p[i+4]=k[i];

}

if(a==1)

{

for(i=4;i<8;i++)

k[i]=b[i];

for(i=0;i<8;i++)

{

j=ip1[i];

Computer Networks Lab Manual MRCET

p[i]=k[j-1];

}

}

}

printf("\n\nThe cipher text::");

for(i=0;i<8;i++)

printf("%d",p[i]);

getch(); }

OUTPUT

Simplified-DES

Enter the plain text of 8 bits length::

1

0

1

0

1

0

1

0

Enter the key of 10 bits length::

1

Computer Networks Lab Manual MRCET

0

1

0

1

0

1

0

1

0

Key Generation::

key k1::11100100

key k2::01010011

The cipher text::01100110

Exercise:

1. Take a plain text and implement AES algorithm
2. Implement a Blowfish algorithm.

8. Write a program to break the above DES coding.

#include<stdio.h>

#include<conio.h>

#include<string.h>

int p10[]={3,5,2,7,4,10,1,9,8,6},

p8[]={6,3,7,4,8,5,10,9},

p4[]={2,4,3,1};

int ip[]={2,6,3,1,4,8,5,7},

Computer Networks Lab Manual MRCET

ipinv[]={4,1,3,5,7,2,8,6},

ep[]={4,1,2,3,2,3,4,1};

int s0[][4]={{1,0,3,2,},{3,2,1,0},{0,2,1,3,},{3,1,3,2}};

int s1[][4]={{0,1,2,3},{2,0,1,3},{3,0,1,0},{2,1,0,3}};

void permute(char op[],char ip[],int p[], int n)

{

int i;

for(i=0;i<n;i++)

op[i]=ip[p[i]-1];

op[i]='\0';

}

void circularls(char pr[],int n)

{

int i;

char ch=pr[0];

for(i=0;i<n-1;i++)

pr[i]=pr[i+1];

pr[i]=ch;

}

void keygen(char k1[],char k2[],char key[])

{

char keytemp[11];

permute(keytemp,key,p10,10);

Computer Networks Lab Manual MRCET

circularls(keytemp,5);

circularls(keytemp+5,5);

permute(k1,keytemp,p8,8);

circularls(keytemp,5);

circularls(keytemp,5);

circularls(keytemp+5,5);

circularls(keytemp+5,5);

permute(k2,keytemp,p8,8);

}

void xor(char op[],char ip[])

{

int i;

for(i=0;i<strlen(op)&&i<strlen(ip);i++)

op[i]=(op[i]-'0')^(ip[i]-'0')+'0';

}

void sbox(char op[],char ip[],int s[][4])

{

int value;

value=s[(ip[0]-'0')*2+(ip[3]-'0')][(ip[1]-'0')*2+(ip[2]-'0')];

op[0]=value/2+'0';

op[1]=value%2+'0';

op[2]='\0';

}

Computer Networks Lab Manual MRCET

void fk(char op[],char ip[],char k[])

{

char l[5],r[5],tmp[9],tmp1[9],tmp2[9];

strncpy(l,ip,4);

l[4]='\0';

strncpy(r,ip+4,4);

r[4]='\0';

permute(tmp,r,ep,8);

xor(tmp,k);

sbox(tmp1,tmp,s0);

sbox(tmp2,tmp+4,s1);

strcat(tmp1,tmp2);

permute(tmp,tmp1,p4,4);

xor(tmp,l);

strcat(tmp,r);

strcpy(op,tmp);

}

void sw(char pr[])

{

char tmp[9];

strncpy(tmp,pr+4,4);

strncpy(tmp+4,pr,4);

tmp[8]='\0';

Computer Networks Lab Manual MRCET

strcpy(pr,tmp);

}

void main()

{

char key[11],k1[9],k2[9],plain[9],cipher[9],tmp[9];

clrscr();

printf("enter 10 bit key:");

gets(key);

if(strlen(key)!=10) printf("invalid key length !!");

else

{

keygen(k1,k2,key);

printf("sub key k1::");

puts(k1);

printf("subkey k2::");

puts(k2);

printf("enter 8 bit plain text:");

gets(plain);

if(strlen(plain)!=8) printf("invalid length plain text !!");

permute(tmp,plain,ip,8);

fk(cipher,tmp,k1);

sw(cipher);

fk(tmp,cipher,k2);

Computer Networks Lab Manual MRCET

permute(cipher,tmp,ipinv,8);

printf("cipher teaxt is::");

puts(cipher);

/* decryption process*/

permute(tmp,cipher,ip,8);

fk(plain,tmp,k2);

sw(plain);

fk(tmp,plain,k1);

permute(plain,tmp,ipinv,8);

printf("decrypted text is::");

puts(plain);

}

getch();

}

Exercise:1. Using AES algorithm decrypt the cipher

 2. Implement HMAC algorithm

Computer Networks Lab Manual MRCET

9. Using RSA algorithm encrypt a text data and Decrypt the same.

a) RSA encryption algorithm

Algorithm:

RSA encrypts messages through the following algorithm, which is divided into 3 steps:

1. Key Generation

I. Choose two distinct prime numbers p and q.

II. Find n such that n = pq.
n will be used as the modulus for both the public and private keys.

III. Find the totient of n, ϕ(n)

ϕ(n)=(p-1)(q-1).

IV. Choose an e such that 1 < e < ϕ(n), and such that e and ϕ(n) share no divisors other than 1
(e and ϕ(n) are relatively prime).
e is kept as the public key exponent.

V. Determine d (using modular arithmetic) which satisfies the congruence relation

de ≡ 1 (mod ϕ(n)).

In other words, pick d such that de - 1 can be evenly divided by (p-1)(q-1), the totient, or ϕ(n).
This is often computed using the Extended Euclidean Algorithm, since e and ϕ(n) are relatively
prime and d is to be the modular multiplicative inverse of e.
d is kept as the private key exponent.

The public key has modulus n and the public (or encryption) exponent e. The private key has
modulus n and the private (or decryption) exponent d, which is kept secret.

2. Encryption

I. Person A transmits his/her public key (modulus n and exponent e) to Person B, keeping
his/her private key secret.

II. When Person B wishes to send the message "M" to Person A, he first converts M to an
integer such that 0 < m < n by using agreed upon reversible protocol known as a padding
scheme.

Computer Networks Lab Manual MRCET

III. Person B computes, with Person A's public key information, the ciphertext c corresponding to

c ≡ me (mod n).

IV. Person B now sends message "M" in ciphertext, or c, to Person A.

3. Decryption

I. Person A recovers m from c by using his/her private key exponent, d, by the computation

m ≡ cd (mod n).

II. Given m, Person A can recover the original message "M" by reversing the padding scheme.

This procedure works since

c ≡ me (mod n),
cd ≡(me)d (mod n),
cd ≡ mde (mod n).

By the symmetry property of mods we have that

mde ≡ mde (mod n).

Since de = 1 + kϕ(n), we can write

mde ≡ m1 + kϕ(n) (mod n),
mde ≡ m(mk)ϕ(n) (mod n),
mde ≡ m (mod n).

From Euler's Theorem and the Chinese Remainder Theorem, we can show that this is true for all
m and the original message

cd ≡ m (mod n), is obtained.

Program:

#include<stdio.h>
main()
{
 int k,b,bin[20];
 int i;
 long int c,m,e,d,n;
 char ch;
 char in_file[20],out_file[20];

Computer Networks Lab Manual MRCET

 FILE *in,*out;

 clrscr();
 printf("\n Enter any input text file name : ");
 gets(in_file);
 printf("\n Enter file name to store enc output : ");
 gets(out_file);
 in = fopen(in_file,"r");
 out = fopen(out_file,"w");

 printf("\n Enter values of e and n : ");
 scanf("%ld%ld",&e,&n);

 i=-1;
 b=e;
 while(b>0)
 {
 bin[++i] = b%2;
 b=b/2;
 }
 k=i;
 do
 {
 m = fgetc(in);
 d = 1;

 for(i=k; i>=0; i--)
 {
 d = (d*d) % n;
 if (bin[i] == 1)
 d = (d*m) % n;
 }

 fputc(d,out);
 }
 while(!feof(in));
 printf("\n File is encrfypted successfully....");
 getch();
}

INPUT/OUTPUT:

 Enter any input text file name : inp.txt

 Enter file name to store enc output : out.txt

Computer Networks Lab Manual MRCET

 Enter values of e and n :
7 187

 File is encrfypted successfully....

C:\TURBOC2>type inp.txt
abcdefghijklmnop123&*()

C:\TURBOC2>type out.txt
\§░ÉTwë│`òp0âB¢I↓v◄/☼t.

b) RSA Decryption algorithm

#include<stdio.h>
main()
{
 int k,b,bin[20];
 int i;
 long int c,m,e,d,n;
 char ch;
 char in_file[20],out_file[20];
 FILE *in,*out;

 clrscr();
 printf("\n Enter any ciphertext file name : ");
 gets(in_file);
 printf("\n Enter file name to store dec output : ");
 gets(out_file);
 in = fopen(in_file,"r");
 out = fopen(out_file,"w");

 printf("\n Enter values of d and n : ");
 scanf("%ld%ld",&e,&n);

 i=-1;
 b=e;
 while(b>0)
 {
 bin[++i] = b%2;
 b=b/2;
 }
 k=i;
 do
 {
 m = fgetc(in);

Computer Networks Lab Manual MRCET

 d = 1;
 for(i=k; i>=0; i--)
 {
 d = (d*d) % n;
 if (bin[i] == 1)
 d = (d*m) % n;
 }
 fputc(d,out);
 }
 while(!feof(in));
 printf("\n File is decrypted successfully....");
 getch();

 }

 INPUT/OUTPUT:

 Enter any ciphertext file name : out.txt

 Enter file name to store dec output : inp1.txt

 Enter values of d and n : 23 187

 File is decrypted successfully....

C:\TURBOC2>type out.txt
\§░ÉTwë│`òp0âB¢I↓v◄/☼t.

C:\TURBOC2>type inp1.txt
abcdefghijklmnop123&*()U

Exercise:

1. Implement Diffie- Hellman cryptosystem using RSA algorithm.
2. Implement SHA-512 algorithm

